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Abstract— Reducing the file size of a JPEG image to meet
bandwidth or terminal constraints is a common transcoding
operation. The reduction can be achieved by reducing either the
quality factor (QF) or the resolution, or both. In this paper, we
analyze the impact of QF and scaling parameter choices on the
quality of the resulting images, as measured by a quality metric
such as the Structural SIMilarity index (SSIM). We propose a
quality-aware transcoding system which considers the quality of
transcoded images when QF and scaling are selected jointly. Its
goal is to select QF and scaling parameters that maximize the
user experience under a given viewing condition, as measured
by the chosen quality metric.

I. I NTRODUCTION

T HE heterogeneous nature of mobile terminals
and multimedia applications renders transcoding

inevitable [1]. Multimedia Messaging Services (MMS),
for example, require server-side adaptation to ensure
interoperability between terminals [2]. The most frequent
image-related interoperability issues do not involve image
formats, as the majority of the traffic involves JPEG and
GIF images, but rather a resolution or file size exceeding
the capabilities of the receiving terminal. For instance, the
limited memory of some mobile phones requires images to
be under a certain size or resolution in order to be received
and displayed.

Changing an image’s resolution, orscaling, to meet
a terminal’s capabilities is a problem with well-known
solutions. However, optimizing image quality against
file size constraints remains a challenge, as there are no
well-established relationships between the quality factor
(QF), perceived quality, and the compressed file size.
Using scaling as an additional means of achieving file size
reduction, rather than merely resolution adaptation, makes
the problem all the more challenging.

Several studies have investigated the problem of file size
(or bit rate) reduction for visual content [3]–[5]. Their results
show that reduction can be achieved through adaptation of
the quantization parameters, rather than through scaling.For
most studies, this makes sense, since they were carried out
in the context of low bit rate video, where resolution is often
limited to a number of predefined formats. However, even in
the context of still-picture coding, scaling as an adaptation
strategy is not considered. For instance, Ridge [4], who
provides excellent methods for scaling and then reducing
the file size of JPEG images, does not consider estimating
scaling and quality reduction in combination. We believe
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this to be a major shortcoming, because the best strategy
for maximizing the user experience may well be to scale
down the picture and compress it with a higher QF, rather
than simply re-compressing it with a lower QF.

In previous work, we have presented methods to estimate
the compressed file size of a JPEG image subject to scaling
and QF changes [6]. We note that several combinations
of QF and scaling lead to the same approximate file size,
raising the question of which combination would maximize
user experience, estimated by an objective quality metric.

In this paper, we investigate combining QF and scaling
parameters in JPEG transcoding to meet the terminal’s
resolution and file size constraints, while at the same time
maximizing quality.

II. T HE TRANSCODING PROBLEM STATEMENT

We now formally define the JPEG image transcoding
problem, as well as the notation used in this paper. LetI
be a JPEG compressed image andQF(I), S(I), W(I),
andH(I) its quality factor, compressed file size, width, and
height respectively. Note that we will assume that the QF
complies with the definition put forward by the Independent
JPEG Group [7]. For a terminal or deviceD, let S(D),
W(D), andH(D) be its maximum permissible compressed
file size, image width, and image height respectively (W(D)
andH(D) are usually larger than the device’s screen size).

Let 0 < z 6 1 be an aspect-preserving scaling, or
zoom factor. A JPEG transcoding operation, denoted
T (I,QFout, z), is the function that returns the compressed
image resulting from the application of both the new quality
factorQFout and the scaling parameterz to the JPEG image
I. A JPEG transcoding operationT (I,QFout, z) is defined
as feasibleon deviceD if, for parametersI, QFout, andz,
we meet the following constraints:

S(T (I,QFout, z)) 6 S(D)

z W(I) 6 W(D)

z H(I) 6 H(D)

We define the following set of feasible JPEG transcoding
operations for the imageI:

F(I,D) =
{
(QFout, z) | T (I,QFout, z) is feasible onD

}

Assuming that several values ofQFout and z lead to
feasible transcodings for deviceD, we are interested in
finding (QF ∗

out(I,D), z∗(I,D)), the values ofQFout and
z that maximize the transcoded quality ofI under a certain



criterionQ. These are given by:

(QF ∗
out(I,D), z∗(I,D)) =

arg max
(QFout,z) ∈ F(I,D)

Q
(
I, T (I,QFout, z)

)

(1)

whereQ(I, J) is a quality metric using the original imageI
and the transcoded imageJ . Ideally, the resulting transcoding
quality would be assessed from the transcoded image alone,
however, it may be more convenient to use a measure of
distortion between the original and the transcoded images.

III. PREDICTING FEASIBLE TRANSCODINGS

In previous work, we presented methods to estimate the
compressed file size of a JPEG image subject to a scalingz
and a modification of its QF [6]. One form for this predictor
is the following:

Ŝ(I,QFout, z) = S(I) MgQF in,gQF out,z̃

where Ŝ(I,QFout, z) is the predicted compressed file size
of the transcoded image obtained by applying quality factor
QFout and scaling parameterz to the imageI. The array
M , computed off-line, is indexed by thequantizedoriginal
quality factorQFin (QFin is to be understood asQF(I), the
original QF ofI), QFout, andz. We will be using the tilde
(∼) to denote quantized values. Suitable quantization allows
the array to be searched efficiently while preventing context
dilution [6]. After deciding on appropriate quantization levels
Q̃F in, Q̃F out, and z̃, the entryMgQF in,gQF out,z̃

is given by:

MgQF in,gQF out,z̃
= |TgQF in

|−1
∑

J ∈ T gQF in(I)

s
(
J, Q̃F out, z̃

)
(2)

whereTgQF in(I)
is the subset of all imagesJ in the training

setT (a large corpus of representative images gathered in [6])
such thatQFin(J) quantizes tõQF in, and where|x| denotes
the cardinality of setx. The functions(J,QFout, z) is defined
as

s
(
J,QFout, z

)
=

S
(
T (J,QFout, z)

)

S
(
J
)

that is, the relative size between the transcoded imageJ ,
to which both the quality factorQFout and scalingz are
applied, and the original imageJ .

Therefore, according to this scheme,MgQF in,gQF out,z̃
is

the relative size prediction (output versus input) for the
various values of̃QF in, Q̃F out, andz̃. An example of such
a sub-array,Mf80,gQF out,z̃

, thus obtained is shown in Table I.
We present an example with̃QF in = 80, because it is the
most useful, as the majority of images found on the Web
have been compressed using aQF close to 80. Note that
the quantization scheme is not fixed by this algorithm, and
we selected a simple quantization so that the matrix is of
dimension10 × 10 (using Q̃F out ∈ {10, 20, . . . , 100} and
z̃ ∈ {10%, 20%, . . . , 100%}) for illustration purposes only.

Taking the examples in section VII, a portion of Table I is
grayed, indicating that the solutions arenonfeasible, either
because a relative file size is larger than 0.25 (light or dark
gray) or larger than 0.50 (dark gray). Examining Table I,
we note that various combinations ofQFout and z lead

Scaling,z̃
gQF out 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10 0.03 0.04 0.05 0.07 0.08 0.10 0.12 0.15 0.17 0.20
20 0.03 0.05 0.07 0.09 0.12 0.15 0.19 0.22 0.26 0.32
30 0.04 0.05 0.08 0.11 0.15 0.19 0.24 0.29 0.34 0.41
40 0.04 0.06 0.09 0.13 0.17 0.22 0.28 0.34 0.40 0.50
50 0.04 0.06 0.10 0.14 0.19 0.25 0.32 0.39 0.46 0.54
60 0.04 0.07 0.11 0.16 0.22 0.28 0.36 0.44 0.53 0.71
70 0.04 0.08 0.13 0.18 0.25 0.33 0.42 0.52 0.63 0.85
80 0.05 0.09 0.15 0.22 0.31 0.41 0.52 0.65 0.78 0.95
90 0.06 0.12 0.21 0.31 0.44 0.59 0.75 0.93 1.12 1.12
100 0.10 0.24 0.47 0.75 1.05 1.46 1.89 2.34 2.86 2.22

TABLE I
THE SUB-ARRAY Mf80,gQF out,z̃

, OPTIMIZED FROM THE IMAGE TRAINING

SET DESCRIBED IN[6] . SHADING CORRESPONDS TO THE EXAMPLES IN

SECTIONVII.

Fig. 1. Proposed quality-aware image transcoding system.

to similar size predictions. For instance,QFout = 90 and
z = 50% give a prediction of 0.44, which is the same as that
for QFout = 60 andz = 80%. The best quality transcodings
necessarily lie at the boundary of the grayed area, since lower
QFs in a column or lower scaling in a row can only further
reduce quality. In addition, we may have to reject some
solutions because they exceed the maximum resolution of
the receiving terminal.

IV. PROPOSEDQUALITY -AWARE TRANSCODING SYSTEM

If many QF and scaling combinations lead to similar
file sizes, then we need to select the combination that
maximizes the user experience. This requires that we define
the quality metricQ(I, J) to solve eq. (1). Many choices
are possible, as it has been shown that JND, SSIM (MS),
IFC, and VIF all perform much better than the widely used
PSNR, the best performer being VIF [8]. For convenience
and without loss of generality, we will use the Structural
SIMilarity (SSIM) index proposed by Wanget al. [9].
Since the original imageI and the transcoded imageJ
may differ in resolution after adaptation, we will need to
scale them to a common resolution before estimating the
quality of the resulting image. We propose to scale both to a
specific resolution based on the viewing conditions—largely
determined by the deviceD—of the transcoded image.

Let us now propose a novel quality-aware transcoding
system, as shown in Fig. 1. The system is composed of
several modules. Aquality-aware parameter selection
module provides estimates of optimal target parameters



zT = ẑ∗(I,D) andQFT = Q̂F ∗
out(I,D) for thetranscoding

operationmodule based on information (Ŝ andQ̂) provided
by the file size and quality predictionmodule , terminal
constraints, the original image’s features (obtained from
the image feature extractionmodule), and the actual
transcoded image. The latter is required in case the
predictors do not perform well and the file size of the
transcoded image. exceeds the constraints. In that case,
the quality-aware parameter selectionmodule will select
a new set of parameters until a valid transcoding is achieved.

The quality of the transcoded image may be measured in
an optionalquality assessmentmodule to validate that the
solution’s quality is indeed satisfactory. Scaling operations
may be used, in the quality assessment module, to scale
both the original and the transcoded image to a common
resolution to apply the quality metric, in our case the SSIM.

The quality-aware parameter selection module will select
the best parameters for the terminal constraints:
(
QF ∗

out(I,D), z∗(I,D)
)

= arg max
(QFout,z)∈F(I,D)

SSIM(I ′, J ′)

whereI ′ andJ ′ are the original and transcoded images, both
scaled using factorszV and zR respectively. According to
Fig. 1, for the image resolutions to be equal, we must have:

zV = zT zR

wherezV 6 1, since we never want to increase the original
image’s resolution when comparing quality, and where
zT 6 1 to meet the terminal constraints. We consider three
cases of interest:

Case1: zV = 1. We compare the images at the resolution
of the original image withzR = 1/zT .

Case2: zT < zV < 1. We compare the images at
a resolution between that of the original
image and that of the transcoded image, with
zR = zV /zT > 1.

Case3: zV = zT < 1. We compare the images at the
resolution of the transcoded image, therefore
zR = 1.

The viewing conditions, controlled by parameterzV

(zT 6 zV 6 1), play a major role in the user’s appreciation
of the transcoded results. If the image might be transferredto
another, more capable device later (e.g. a PC), the resolution
of the original image must be considered (Case 1). Case 2
applies when the image is viewed at a resolution between
that of the transcoded image and that of the original image;
for example, the maximum resolution (which may be
accessible only through pan and zoom) is supported by the
device. Case 3applies to the case where the image will
only be viewed on the terminal. However, inCase 3, one
must provide for instances where the transcoded image is
of degenerate size. Unless thumbnailing is desired,Case 3
cannot completely account for image quality in the case
where the transcoded image is very small, and so is to be
avoided.

If the image is to be optimized for viewing on the terminal
only, then we propose that the viewing condition scalingzV

be set to the maximum resolution supported by the terminal,
which may exceed its screen resolution.

V. PREDICTING THE QUALITY OF TRANSCODED IMAGES

As with the file size predictor presented in section III, we
would like to have a quality predictor which can be used in
the proposed quality-aware transcoding system. Therefore,
using a similar approach to the one described in [6] for file
size prediction, we derive a quality predictor.

We want to obtain the quality of the transcoded picture
following application of a new QF1 6 QFout 6 100 and
scaling factor0 < z 6 1 when the viewing parameterzV is
applied for image comparison. Let

QzV
(I,QFout, z) =

SSIM
(
R(I, zV ), R(T (I,QFout, z),

zV

z
)
) (3)

be the viewing condition aware quality function, where
R(J, u) is an operator which decompressesJ and scales it
using scaling factoru, QFout is the desired output QF,z is
the desired scaling factor, andSSIM(I, J) compares the
two images scaled at a common resolution.

As the function QzV
is expensive to compute for all

combinations ofQFout and z, it should rather bepredicted
from a precomputed array of possible parameter sets. Let
this be precomputed into an arraySSIM , the indices
of which are the quantized viewing condition zV , the
original QF (QF in), the transcoded QF (QFout), and
the scaling factorz. In our experiments, we used the
quantized values{10, 20, . . . , 100} for Q̃F in and Q̃F out

and{0.1, 0.2, . . . , 1.0} for z̃ and z̃V .

According to this scheme, the quality prediction for
quantized input̃QF in, quantized desired output̃QF out, and
quantized scalings̃z and z̃V is given by:

SSIM
z̃V ,gQF in,gQF out,z̃

=

|TgQF in
|−1

∑

J ∈ T gQF in(I)

Qz̃V

(
J, Q̃F out, z̃

)
(4)

whereTgQF in(I)
is defined as previously andQz̃V

is given by
eq. (3). Accordingly,SSIM

z̃V ,gQF in
denotes a slice of that

array, a matrix, with indices̃QF out and z̃. The predictor
Q̂zV

for (3) now becomes:

Q̂zV

(
I,QFout, z

)
= SSIM

z̃V ,gQF in,gQF out,z̃
(5)

Tables II and III show the distribution of the average
SSIM values SSIM

fzV ,gQF in,gQF out,z̃
, for Q̃F in = 80,

computed forCases 1and 2 over the large image database
assembled in [6]. Table III shows average SSIM values for
Case 2, where the viewing condition scaling corresponds to
a maximum zoom of 40% of the size of the original picture
(zV = 40%). The values obtained in Tables II and III are
quite reliable. Indeed, their standard deviations, presented
in Tables IV and V, are quite low. Therefore, any element
of these SSIM tables derived for variouszV can be used
reliably as quality estimatorŝQ in the proposed transcoding
system.



Scaling,z̃, %
gQF out 10 20 30 40 50 60 70 80 90 100
10 0.12 0.20 0.27 0.33 0.38 0.42 0.46 0.49 0.52 0.55
20 0.14 0.24 0.33 0.40 0.47 0.52 0.56 0.59 0.63 0.66
30 0.15 0.27 0.36 0.44 0.51 0.56 0.61 0.65 0.68 0.73
40 0.16 0.28 0.38 0.47 0.54 0.59 0.64 0.68 0.71 0.77
50 0.17 0.29 0.40 0.49 0.56 0.62 0.67 0.71 0.74 0.79
60 0.17 0.31 0.42 0.51 0.59 0.64 0.69 0.74 0.77 0.86
70 0.18 0.32 0.43 0.53 0.60 0.66 0.71 0.76 0.79 0.93
80 0.19 0.34 0.46 0.56 0.64 0.71 0.76 0.80 0.83 1.00
90 0.21 0.37 0.50 0.61 0.70 0.76 0.81 0.85 0.87 0.99
100 0.23 0.42 0.57 0.69 0.78 0.83 0.88 0.91 0.93 0.99

TABLE II
THE SUBARRAY SSIM

fzV ,f80,gQF out,z̃
COMPUTED FORCase 1(zV = 1)

USING THE IMAGE TRAINING SET FROM[6]. SHADING CORRESPONDS TO

THE EXAMPLES IN SECTIONVII.

Scaling,z̃, %
gQF out 10 20 30 40 50 60 70 80 90 100
10 0.25 0.43 0.55 0.62 0.69 0.73 0.76 0.79 0.80 0.82
20 0.30 0.51 0.65 0.73 0.79 0.82 0.85 0.87 0.88 0.89
30 0.33 0.56 0.69 0.77 0.83 0.86 0.89 0.90 0.91 0.92
40 0.35 0.58 0.72 0.80 0.85 0.88 0.90 0.92 0.92 0.94
50 0.36 0.61 0.74 0.82 0.87 0.90 0.92 0.93 0.94 0.95
60 0.38 0.63 0.76 0.84 0.89 0.92 0.93 0.94 0.95 0.96
70 0.39 0.65 0.78 0.86 0.90 0.93 0.94 0.95 0.95 0.97
80 0.42 0.68 0.81 0.89 0.93 0.95 0.96 0.96 0.97 1.00
90 0.45 0.72 0.85 0.92 0.95 0.96 0.97 0.97 0.98 0.99
100 0.49 0.78 0.91 0.97 0.98 0.98 0.99 0.99 0.98 1.00

TABLE III
THE SUBARRAY SSIM

fzV ,f80,gQF out,z̃
COMPUTED FORCase 2(WITH

zV = 40%) USING THE TRAINING SET FROM[6]. SHADING

CORRESPONDS TO THE EXAMPLES IN SECTIONVII.

Scaling,z̃, %
gQF out 10 20 30 40 50 60 70 80 90 100
10 5.8 6.8 8.1 9.1 10.1 10.8 11.5 12.1 12.5 13.2
20 6.0 7.2 8.4 9.3 9.9 10.4 10.8 11.1 11.2 11.5
30 6.2 7.5 8.7 9.5 9.9 10.1 10.3 10.4 10.4 10.4
40 6.3 7.7 8.9 9.6 10.0 10.1 10.2 10.1 10.0 9.9
50 6.4 7.9 9.0 9.6 9.8 9.7 9.6 9.3 9.1 9.5
60 6.6 8.2 9.3 9.7 9.7 9.5 9.2 8.8 8.5 5.2
70 6.8 8.5 9.6 10.0 9.8 9.6 9.1 8.6 8.3 5.1
80 7.2 8.9 9.9 10.0 9.4 8.9 8.1 7.4 6.9 0.9
90 7.6 9.6 10.4 10.1 9.1 8.2 7.2 6.4 5.9 1.2
100 8.4 10.4 10.9 10.0 8.6 7.2 6.1 5.1 4.4 0.8

TABLE IV
THE STANDARD DEVIATION (×100) OF SUBARRAY

SSIM
fzV ,f80,gQF out,z̃

COMPUTED FORCase 1(zV = 1) USING THE

IMAGE TRAINING SET FROM [6].

Scaling,z̃, %
gQF out 10 20 30 40 50 60 70 80 90 100
10 7.4 9.3 11.0 12.0 12.5 12.6 12.6 12.5 12.3 12.1
20 7.7 8.9 9.8 10.3 10.3 10.1 9.8 9.5 9.1 8.8
30 7.9 8.8 9.2 9.3 9.1 8.7 8.3 7.9 7.6 7.2
40 8.1 8.9 9.2 9.1 8.8 8.5 8.1 7.6 7.4 6.8
50 8.2 8.7 8.6 8.2 7.6 7.2 6.8 6.2 6.0 5.6
60 8.4 8.6 8.2 7.7 7.0 6.5 5.9 5.4 5.1 3.6
70 8.6 8.8 8.5 7.8 7.1 6.7 6.2 5.8 5.6 4.3
80 8.9 8.4 7.5 6.4 5.3 4.8 4.1 3.7 3.3 0.3
90 9.4 8.1 6.7 5.3 4.0 3.5 3.1 2.8 2.5 0.6
100 9.9 7.2 4.5 2.9 1.9 2.0 1.7 1.7 1.5 0.4

TABLE V
THE STANDARD DEVIATION (×100) OF SUBARRAY

SSIM
fzV ,f80,gQF out,z̃

COMPUTED FORCase 2(WITH zV = 40%) USING

THE TRAINING SET FROM[6].

VI. T HE TRANSCODING PROCESS

In the proposed quality-aware transcoding system
illustrated in Fig. 1, the parameter selection process would
be as follows: the quality-aware parameter selection module
selects, from all the predicted feasible transcodings, the
one providing the best predicted quality for the metric in
use. Feasible solutions are predicted based on terminal
constraints such as the display resolution and predicted file
size from Table I. Quality could be estimated from Table II
(for zV = 100%) or Table III (for zV = 40%) (given that
QF(I) = 80), or from another pre-computed table derived
from the actualQF(I) and viewing condition scalingzV

. After the optimal parameters have been estimated, they
are used to perform an actual transcoding. The transcoded
image is then validated. If its file size is satisfactory, then the
transcoded image is returned. Otherwise, another transcoding
operation is performed with a smaller transcoded file size
target.

Alternatively, the file size prediction may be used to
identify the (QFout, z) pairs lying around the boundary
(on both sides of the boundary) of feasible solutions, and
evaluating, for each, the actual quality of the actually
transcoded image. The transcoded image with the highest
quality (while meeting the terminal’s constraints) would
then be returned as the system’s output. This second option
involves more computation, but ensures that the best possible
parameters for a given image are selected.

VII. T RANSCODING EXAMPLES

Let us consider a first example inspired from the
MMS application. LetD be a device with the remaining
message length (excluding headers and message structure)
of S(D) = 11000 bytes, with a maximum resolution of
W(D) = 1024, H(D) = 768, and an image to be sent,
Lena, with S(I) = 43266, W(I) = 512, H(I) = 512 and
QF(I) = 80. The maximum acceptable scaling factor is
z = 100% since bothW(D) > W(I) and H(D) > H(I).
The maximum relative file size is1100043266 ≈ 0.25.

Using Table I, we determine which parameters are part
of the feasible setF(I,D). In Table I, the nonfeasible
solutions—those with a relative size larger than0.25—are
shaded in light or dark gray. ConsideringCase 1, where the
transcoded image is scaled up to be compared to the original
image, and using Table II , we find that the parameters that
maximize the SSIM quality metric areQF out = 50 and
z = 60%, yielding a predicted SSIM score of 0.62 (see the
bold value in the table of optimal solutions for the various
examples presented here). Now, looking at Tables VI and
VII, which provide the true file sizes and SSIM values
for Lena (obtained by performing actual transcodings on
Lena), we find that the parameters that maximize the SSIM
quality metric areQFout = 70 and z = 50%, yielding
an SSIM score of 0.61. The solutionQFout = 50 and
z = 60% is a close second, yielding an SSIM score of
0.60. Therefore, the solution obtained using the predictors
and the predicted quality are quite good. Using the PSNR
as the quality metric (now using Table IX), we obtain a
very different solution:QFout = 10 and z = 100%, for a
PSNR of26.2 dB. Figure 2 shows the visual results of each
solution. The PSNR solution in Figure 2(c) has the highest



Scaling,z, %
QF out 10 20 30 40 50 60 70 80 90 100
10 0.01 0.02 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.18
20 0.01 0.03 0.05 0.07 0.10 0.14 0.17 0.21 0.25 0.29
30 0.02 0.04 0.07 0.10 0.13 0.18 0.23 0.28 0.33 0.39
40 0.02 0.04 0.08 0.12 0.16 0.22 0.27 0.33 0.40 0.48
50 0.02 0.05 0.09 0.13 0.18 0.25 0.31 0.39 0.46 0.51
60 0.02 0.05 0.10 0.15 0.21 0.28 0.36 0.44 0.54 0.73
70 0.03 0.06 0.11 0.18 0.25 0.34 0.43 0.53 0.65 0.89
80 0.03 0.08 0.14 0.22 0.31 0.42 0.54 0.68 0.82 1.00
90 0.04 0.11 0.20 0.31 0.44 0.62 0.79 0.99 1.20 1.18
100 0.08 0.24 0.47 0.79 1.15 1.63 2.10 2.63 3.23 2.48

TABLE VI
RELATIVE FILE SIZES FORLENA, QFin = 80.

Scaling,z, %
QF out 10 20 30 40 50 60 70 80 90 100
10 0.14 0.23 0.28 0.33 0.37 0.39 0.42 0.43 0.45 0.46
20 0.16 0.27 0.34 0.40 0.46 0.49 0.52 0.55 0.57 0.58
30 0.18 0.30 0.38 0.45 0.50 0.54 0.58 0.61 0.63 0.66
40 0.20 0.32 0.41 0.48 0.53 0.58 0.61 0.65 0.67 0.71
50 0.21 0.34 0.43 0.51 0.56 0.60 0.64 0.68 0.71 0.72
60 0.23 0.35 0.45 0.53 0.58 0.63 0.67 0.71 0.74 0.84
70 0.23 0.37 0.48 0.56 0.61 0.66 0.71 0.75 0.78 0.93
80 0.24 0.39 0.51 0.59 0.65 0.71 0.75 0.80 0.83 1.00
90 0.27 0.44 0.55 0.65 0.71 0.78 0.82 0.86 0.89 0.98
100 0.29 0.49 0.64 0.76 0.84 0.89 0.92 0.94 0.96 0.99

TABLE VII
SSIM FOR LENA, QFin = 80, zV = 100%.

resolution but the smallest QF, and exhibits an excessive
number of blocking artifacts. The solution in Figure 2(d)
has a very low resolution but the highest QF, and is quite
blurry. The SSIM solution in Figure 2(b) seems to be the
best compromise and appears to provide the best perceptual
quality.

Now consider a maximum relative size of 0.50 with
the other constraints the same as previously. Then, we
find, using Table I and Table II (where the nonfeasible
solutions are shaded with dark gray), that the parameters
that maximize the SSIM quality metric areQF out = 40
and z = 100%, yielding a predicted SSIM score of 0.77.
Now, looking at Tables VI and VII, we find that many
combinations of parameters maximize the SSIM quality
metric for Lena (any set of values on the diagonal from
(QFout = 90, z = 50%) to (QFout = 40, z = 100%)); all
of them yielding an SSIM score of 0.71. Therefore, our
predicted solution is among the optimal solutions, although
our predicted SSIM is not as good as expected. Using the
PSNR as the quality metric, we obtain the same solution:
QFout = 40 andz = 100%, for a PSNR of31.9 dB.

Let us reconsider two examples, but now with a new
device D such thatH(D) = 320 and W(D) = 240,
leading to a maximum allowable scalingz of 40% (since
zmax = min(320

512 , 240
512 ) ≈ 47%). The viewing conditions,

determined by the device, suggest comparison atzV = 40%.
Let us first consider the case where the maximum relative
file size is 0.25. Using the SSIM computed for a viewing
condition of zV = 40%, as shown in Table III, we find
that QFout = 80 and z = 40% for an SSIM of 0.89. Now,
looking at Tables VI and VIII for Lena, we find the same
solution,QFout = 80 and z = 40%, yields an SSIM score
of 0.88, which is very close to the predicted value of 0.89.

Scaling,z, %
QF out 10 20 30 40 50 60 70 80 90 100
10 0.28 0.44 0.53 0.59 0.64 0.68 0.71 0.73 0.75 0.76
20 0.33 0.53 0.63 0.69 0.76 0.80 0.82 0.84 0.85 0.85
30 0.37 0.58 0.69 0.75 0.81 0.84 0.86 0.88 0.89 0.90
40 0.40 0.61 0.72 0.78 0.84 0.87 0.89 0.91 0.92 0.93
50 0.43 0.63 0.74 0.81 0.86 0.89 0.91 0.93 0.93 0.93
60 0.45 0.65 0.77 0.83 0.88 0.91 0.92 0.94 0.95 0.96
70 0.47 0.68 0.80 0.86 0.90 0.93 0.94 0.95 0.96 0.98
80 0.49 0.71 0.83 0.88 0.92 0.95 0.96 0.97 0.97 1.00
90 0.54 0.77 0.87 0.92 0.95 0.97 0.98 0.98 0.98 0.99
100 0.58 0.83 0.94 0.98 0.99 0.99 0.99 0.99 0.99 1.00

TABLE VIII
SSIM FOR LENA, QFin = 80, zV = 40%.

Scaling,z̃, %
gQF out 10 20 30 40 50 60 70 80 90 100
10 17.3 19.3 20.6 21.6 22.1 23.0 23.5 24.0 24.4 26.2
20 17.8 20.1 21.6 22.7 23.2 24.4 25.1 25.8 26.4 28.7
30 18.0 20.4 22.0 23.2 23.7 25.1 25.9 26.7 27.4 30.2
40 18.1 20.6 22.2 23.5 23.9 25.5 26.3 27.3 28.1 31.9
50 18.2 20.7 22.4 23.7 24.1 25.7 26.7 27.7 28.6 32.5
60 18.4 20.8 22.6 23.9 24.2 26.0 27.0 28.1 29.1 33.0
70 18.4 21.0 22.7 24.1 24.4 26.3 27.3 28.6 29.7 37.3
80 18.4 21.1 22.9 24.4 24.6 26.6 27.8 29.3 30.6 54.9
90 18.6 21.3 23.2 24.7 24.9 27.1 28.3 30.1 31.6 48.0
100 18.7 21.5 23.4 25.0 25.1 27.5 28.8 30.7 32.2 51.4

TABLE IX
THE SUBARRAY PSNR

fzV ,f80,gQF out,z̃
COMPUTED FORCase 1(WITH

zV = 1) USING THE IMAGE TRAINING SET FROM[6]. SHADING

CORRESPONDS TO THE EXAMPLES IN SECTIONVII.

Scaling,z̃, %
gQF out 10 20 30 40 50 60 70 80 90 100
10 20.0 22.6 24.4 25.8 27.4 28.6 29.7 30.6 31.3 31.9
20 20.9 23.9 26.1 28.0 30.0 31.7 33.0 34.1 34.9 35.7
30 21.4 24.5 27.1 29.3 31.6 33.4 34.9 36.1 37.0 37.9
40 21.7 25.0 27.7 30.2 32.6 34.6 36.2 37.5 38.4 39.7
50 21.9 25.3 28.2 31.0 33.5 35.6 37.2 38.5 39.5 40.7
60 22.1 25.6 28.6 31.7 34.3 36.4 38.1 39.4 40.4 41.2
70 22.4 26.0 29.2 32.8 35.4 37.6 39.3 40.7 41.7 44.5
80 22.7 26.5 30.0 34.3 36.9 39.2 40.9 42.3 43.4 58.5
90 23.0 27.1 31.0 37.1 39.2 41.7 43.4 44.8 45.8 51.9
100 23.3 27.6 32.1 43.8 43.5 46.5 48.2 49.5 50.4 54.7

TABLE X
THE SUBARRAY PSNR

fzV ,f80,gQF out,z̃
COMPUTED FORCase 2(WITH

zV = 40%) USING THE TRAINING SET FROM[6]. SHADING

CORRESPONDS TO THE EXAMPLES IN SECTIONVII.

If we are using the PSNR instead (and Table X), we obtain
the same solution, for a PSNR of34.3 dB.

Finally, considering that a maximum relative file size of
0.50 with the other device constraints the same as previously,
we find that the parameters that maximize the SSIM quality
metric areQF out = 90 and z = 40%, yielding a predicted
SSIM score of 0.92. Now, looking at Tables VI and VIII, we
find very same solution and predicted quality value. Using
the PSNR as the quality metric, we again obtain the same
solution for a PSNR of37.1 dB.

VIII. D ISCUSSION

Using the PSNR as the quality metric, we observe that the
system favors solutions with the highest allowed resolution,
regardless of the QF (a trend we have observed over many
examples and viewing conditions beyond those presented
here). By contrast, using the SSIM as the quality metric, the



(a) (b)

(c) (d)

Fig. 2. Transcoded Lena (details) showing feasible solutions to the problem
of a maximum relative file size of 0.25 withzV =100%: (a) original image;
(b) optimal solution using the SSIM (QF = 50 andz = 60%); (c) optimal
solution using the PSNR (QF = 10 andz = 100%); (d) a high-QF low-
resolution solution (QF = 100 andz = 20%).

system seems to arrive at a better tradeoff between the loss
of detail due to scaling and the blocking artifacts introduced
with a low QF. Indeed, it tends to select a solution with
smaller resolution as the maximum permissible relative
file size becomes smaller, thereby avoiding solutions with
high resolution at the expense of an unacceptably small
QF. We observed this behavior in the examples in the
previous section, especially that in Figure 2. For instance,
the optimal solution for a maximum relative file size of
0.25 wasQF out = 50 andz = 60% (not the poorer quality
QF out = 10 andz = 100%), while for a maximum relative
file size of 0.50, it wasQF out = 40 andz = 100%, yielding
a solution with maximal resolution.

In literature, researchers often claim the superiority of
the SSIM over the PSNR for the objective assessment of
JPEG-coded images [8]. This seems amply justified in
terms of the scope of this research, as we believe it is more
appropriate to use a smaller-resolution higher-QF solution
than the highest possible resolution with extremely low QF
(as would be favored by the PSNR).

Comparing Tables II and III, we observe that, overall,
the SSIM values forzV = 100 (Table II) are smaller than
those forzV = 40 (Table III). This observation also holds
when the PSNR is used. This is due to the fact that, aszV

decreases, the original image is more aggressively scaled
down for comparison (and therefore filtered), reducing the
difference between the scaled down original image and
the transcoded image. Therefore, aszV decreases, quality
values in the tables increase. However, it would be wrong to
conclude that it is better to optimize for a smaller viewing
condition scalingzV because it yields higher quality values.
The viewing condition scalingzV should be fixed by the
context of the transcoding problem, and from it an optimal
solution identified.

For simplicity, we have assumed in our examples that

zV was set to the maximum resolution supported by the
terminal, which may exceed its screen resolution—possibly
being accessible to the user through a pan/zoom function.
Alternatively, we may want to setzV to the device’s screen
size. Interestingly, we observe that, for such case, the
resolution of the optimal solution may be higher thanzV .
For instance, looking at Table III, we observe that, for a
maximum relative size of either 0.25 or 0.50 (to use the
same examples as in the previous section), we obtain better
quality by transcoding withz = 50% than with z = 40%.
This shows that it makes sense for an MMS mobile terminal
to support higher resolution than its screen resolution for
image storage in order to optimize quality, even if the
images are only to be viewed on the device. Of course, the
original reason why MMS mobile terminals support higher
resolutions has more to do with the benefit of being able to
zoom and pan with images and to display them on a more
capable device such as a PC.

IX. CONCLUSIONS

In this paper, we analyzed the impact of various combina-
tions of QF and scaling parameter values on the quality of
transcoded images. Using the SSIM, we showed how quality
varies withQFout and scaling for various viewing conditions.
We also proposed a quality-aware transcoding system capable
of predicting the best combination of QF and scaling for
any given metric. Using the PSNR, solutions with maximal
allowed resolution are typically selected without considering
the QF. However, in general, using the SSIM metric, the
systems tend to select parameters that balance output QF
and scaling better than the PSNR. So, as the target file size
becomes smaller the optimal resolution tends to be smaller to
allow the selection of a reasonable quality factor and better
overall quality. This confirms our initial hypothesis, which
is that the best strategy for maximizing the user experience
may well be to scale down the picture and compress it with a
higher QF, rather than simply re-compressing it with a lower
QF. We have also shown how this can be performed.
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