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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

The Rhind Mathematical Papyrus

I Discovered in Thebes in (or shortly before) 1858,

I Bought by Alexander Henry Rhind in 1858,

I Acquired by British Museum in 1865,
Under cat. no. BM 10057, BM 10058. A few fragments in the Brooklyn

Museum, cat. no. 37.1784Ea-b.

I Papyrus dates from around 1542 BC,

I May be a copy of an original dating from 1840–1800 BC.
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

The Rhind Mathematical Papyrus

I The usual numbering of the problems by Chace & Manning’s,

I Contains tables of 2/n and n/10 fractions,

I Contains arithmetic and simple “algebraic” problems,

I Contains problems concerned with areas and volumes.
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

Circular areas and circular-base volumes

The problems that interest us are of the form :

I A circular area of diameter d : what is its area ?

I A cylindrical volume of diameter d and height h : what is its
volume ?

The Ancient Egyptians did have a method of computing these
values, and in a rather accurate way.
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

Problems 41–43

Problems concerned with cylindrical volumes.

I Problem 41 : volume of a cylindrical granary,
from radius and height in cubits)

I Problem 42 : same as 41, but with unit conversion,
(from cubits3 to ’khar’)

I Problem 43 : same as 41, except starting measures in khars.

They establish :

I
(
d − 1/9d

)2
=

(
8/9d

)2
as the area of a circle of diameter d

(while the exact formula is π/4d
2).

I
(
d − 1/9d

)2
h as the volume of the cylinder.
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

Problem 50

I The area of a circle of diameter d is
(
d − 1/9d

)2

I Circle reads “9 khets” (another unit of length)

I Area is 82 = 64 st3 t (setjat=khet2)
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

Problem 50

Method to compute a circular area of 9 khets | What is the amount of its
area ? | Then you subtract its 1/9, resulting 1 | The remainder is 8 | Then
you multiply 8 by 8. It results 64 | It is the amount of its area, 64 setjats
| The procedure is

1 9
9 1

Subtract it (to 9), the remainder is 8

1 8
2 16
4 32
\ 8 64

The amount is 64 setjats.
(source : Michel, Imhausen.)
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

Problem 48

I Shows “diagram”

I Shows two squaring
procedures,

I May be the work of a different
scribe, maybe an instructor.

I No problem statement.
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

Problem 48

No text, only the diagram and the details of two squaring :

. 8 st3t \ . 9 st3t
2 16 st3t 2 18 st3t
4 32 st3t 4 36 st3t
\ 8 64 st3t \ 8 72 st3t

dmd
¯

81 st3t

(source : Michel, Imhausen.)

Does it imply the ratio
64

81
as an approximation to

π

4
?
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

Problem 48

I The diagram is
≈ 15cm× 15cm

I Is the diagram
explanatory ?

I If so, what does it show ?

A circle in a square ?

An octagon in a square ?
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Timeline and physical description
The problem : circular areas
RMP 41–43, 48 and 50
RMP 48 : Is the drawing explanatory ?
Why is it of any interest ?

The surprising precision of the formula

1

I The ratio of areas is
π

4
= 0.785398 . . .

I The Ancient Egyptians’
formula gives
64

81
= 0.79012 . . .

I The Ancient Egyptians’
approximation is ≈ 0.6% off.

Not bad !
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Engels, Robin & Shute (and Dorka)
Vogel, Gillings (and Guillemot)
Struve & Turaev

According to Engels

a
2

a

r
=

a 4
√ 5

A
B

C

I If a = 8, then r = 2
√

5 ≈ 4 1
2 ,

and d ≈ 9
(r = 4.47213 . . . d = 8.9442 . . .)

I Therefore, the square and the
circle have ≈ the same area.

I The circle has diameter ≈ 9,

I The square has area 82 = 64,

I Establishing A ≈
(

8/9d
)2

.
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Engels, Robin & Shute (and Dorka)
Vogel, Gillings (and Guillemot)
Struve & Turaev

According to Robin & Shute

8

d
=

4
√ 5
≈

9
4

I A variation that puts the
diameter directly in relation
with the side of the square,

I ...but doesn’t change the line
of reasoning.

I ...we still get a square of area
82 = 64.
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Engels, Robin & Shute (and Dorka)
Vogel, Gillings (and Guillemot)
Struve & Turaev

A (possible) justification by Dorka

I How do we know the circle and
the square areas are close ?

I Are the corners of the square
outside the circle have ≈ same
area as the circle segments
outside the square.

I Dorka shows that a 18 × 18 grid
gives the best results, with an
error of ≈ 0.4 %

9

Steven Pigeon Quadrature in Ancient Egypt Revisited



Introduction
Interpretations

Analysis
Conclusion
References

Engels, Robin & Shute (and Dorka)
Vogel, Gillings (and Guillemot)
Struve & Turaev

According to Vogel

I Tries to explain ,

I Proposes an irregular octagon
of area 63.

I Build a square of equal area,√
63. Since

√
63 ≈ 8, use 82.

I This explanation is accepted
by Gillings.
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Engels, Robin & Shute (and Dorka)
Vogel, Gillings (and Guillemot)
Struve & Turaev

According to Guillemot

I Tries to explain ,

I The corners have area 17, the
irregular octagon 64,

I Supposes the diagram is to be
understood literally.
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Engels, Robin & Shute (and Dorka)
Vogel, Gillings (and Guillemot)
Struve & Turaev

According to Struve & Turaev

I Tries to explain 64/81, and
why it is so precise,

I Uses a 9× 9 grid,

I Finds 17 squares (mostly)
outside the circle,

I Simple reasoning applies
result to a whole circle.

1 2 3 4 5 6

7 8 9 10

11 12 13

14 15

16

17
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Why (1− 1/9)2 ?
A classical quadrature ?√

63 ≈ 8 and the quadrature
64/81 and “mise au carreau”
Computational complexity and precision

Why (1− 1/9)2 ?

The real question remains : where does (1− 1/9)2 from ?

The hypotheses are :

I Engel’s “classical quadrature”

I Vogel’s “hybrid quadrature”

I A number of ad hoc hypotheses (Guillemot, Struve & Turaev,
etc.)
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Why (1− 1/9)2 ?
A classical quadrature ?√

63 ≈ 8 and the quadrature
64/81 and “mise au carreau”
Computational complexity and precision

A classical quadrature ?

a
2

a

r
=

a 4
√ 5

A
B

C

8

d
=

4
√ 5
≈

9

4

I Not justified by

I Geometrically complicated ?

I Could they notice that
4
√

5 6= 9 ?

I Need justification (cf. Dorka)
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Why (1− 1/9)2 ?
A classical quadrature ?√

63 ≈ 8 and the quadrature
64/81 and “mise au carreau”
Computational complexity and precision

√
63 ≈ 8 and the quadrature

I May explain

I Area of Vogel’s octagon is 63,
so why not use the ratio 7/9 ?

I Is the adjustment to 64 a
quadrature, or a precision fix
(and, if so, what explains it) ?
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Why (1− 1/9)2 ?
A classical quadrature ?√

63 ≈ 8 and the quadrature
64/81 and “mise au carreau”
Computational complexity and precision

64/81 and “mise au carreau”

I Could it be just a ratio and
not a quadrature ?

I Then why express it as
(1− 1/9)2 ? Is it a
computational shortcut ?

I Does not explain

1 2 3 4 5 6

7 8 9 10

11 12 13

14 15

16

17
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Why (1− 1/9)2 ?
A classical quadrature ?√

63 ≈ 8 and the quadrature
64/81 and “mise au carreau”
Computational complexity and precision

Computational complexity

I
7

9
or

8

9
lead to the same kind of complexity (cf. problem 42).

I
7

9
=

2

3
+

1

9
=

1

2
+

1

6
+

1

9
: compute d2, then

(
1

2
+

1

6
+

1

9

)
d2,

I or d2, then

(
d2 − 1

9
d2 − 1

9
d2

)
,

I Even if
8

9
=

2

3
+

1

6
+

1

18
=

1

2
+

1

3
+

1

18
, they compute

(
d − 1

9
d

)2

.

I Therefore, maybe a complexity issue (depends on d).
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Why (1− 1/9)2 ?
A classical quadrature ?√

63 ≈ 8 and the quadrature
64/81 and “mise au carreau”
Computational complexity and precision

Precision

If you actually know π,

I π = 3.141592654 . . .

I
π

4
= 0.7853981634 . . .

I
7

9
= 0.7, about −1% off,

I
64

81
= 0.7901234567 . . ., about +0.6% off ! (π ≈ 256

81
= 3.16049 . . .)
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“Mise au carreau” or real quadrature ?
Complexity and precision
Conclusion ?

“Mise au carreau”, or real quadrature ?

Well, we don’t know :

I None of the hypotheses explain all of the evidence,

I All make at least some sense,

I The diagram hints to a simple geometric approximation,

but...

I The formula is quadrature-like.

Was
64

81
obtained in some other way, then formalized as the

computation of a square ?
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“Mise au carreau” or real quadrature ?
Complexity and precision
Conclusion ?

Complexity and precision

We cannot directly invoke complexity as an explanation of the
squaring :

I Even simple combinations of
1

9
and d can lead to baroque

computations,

I It is thought of as a general procedure : if some problems shows a
convenient d = 9, others have d = 10,

I Doesn’t explain either.
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“Mise au carreau” or real quadrature ?
Complexity and precision
Conclusion ?

Conclusion ?

I Interesting hypotheses,

I Conflicting evidence,

I All hypotheses contradict or ignore some piece of evidence,

I Very few documentary sources.

The case isn’t closed !
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I Annette Imhausen — Ägyptische Algorithmen : Eine Untersuchung zur den Mittelägyptischen
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