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Overview of the presentation

We will show that the proposed prediction method, EJQSP, for
JPEG adaptation outperforms signi�cantly our previous work.

The presentation is structured as follows:

Introduction
Adaptation Examples
Problem De�nition

Previous Work

Proposed Solution

Results

Discussion
Training
Prediction

Conclusion
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Adaptation Examples
Problem De�nition

Problem De�nition
Adapting Images to Given Constraints

Why Adapt Images?

I Di�erent contexts: MMS

I Di�erent contexts: Universal Access
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Adaptation Examples
Problem De�nition

Problem Context
MMS � Dramatis Personæ

Alice

Bob

Minou

On the other hand,
Bob's phone is a
quite limited phone:

Does not have a camera
Pictures upto 640x480
Messages up to 100K

Alice's phone has a
quite capable phone:

10 MPixel Camera,
Plays media like H.264, 
3G, E-Mail, etc.
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Adaptation Examples
Problem De�nition

Problem Context
MMS � Heterogeneous Terminals

← COMPATIBLE ←
→ INCOMPATIBLE! →

E-mail, �Megapixel� Pro�le
Images 6 1600×1200, MMS message 6 300KB

�Image Rich� pro�le
Images 6 640×480, MMS message 6 100KBSteven Pigeon Stéphane Coulombe E�cient Clustering-Based Algorithm for Predicting File Size and StructuralSimilarity of Transcoded JPEG Images
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Adaptation Examples
Problem De�nition

Problem Context
MMS � User-Experience Based Adaptation

Service
provider's
Network

Provider uses
Smart Adaptation:
filtering, resizing,
and compression
settings combined
for more pleasing
results

Bob receives a smaller,
but visually pleasing
image. He may not
notice the difference
from the original

Alice takes a 
picture,
sends to Bob
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Adaptation Examples
Problem De�nition

Problem Context
Mobile Browsing

Mobile Browsing

I Many di�erent devices
that are not all very capable

I Di�erent bandwidths
that depends on data plans

I Inherently richer than MMS
Images of all types, video, scripts, etc.

I Di�erent goals
like maximizing responsiveness while
minimizing battery usage
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Adaptation Examples
Problem De�nition

Problem De�nition

In order to optimize content for MMS or for mobile browsing, we
need:

I A domain-speci�c model of user-experience

...and constraints:

I Maximum resolution of images,

I Maximum message size,

I Image and Video coding standards,

I Transmission Bandwidth,

I etc.
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Adaptation Examples
Problem De�nition

Adaptation
Harder than it Looks

This seems trivial, but...

I Adaptation is useful under explicit optimization
The goal is to adapt document (MMS, Web Page) in a way that maximizes user-experience
under the given constraints (bandwidth, resolution, message size), and as such,

I Adapting JPEG e�ciently is still a challenge

I Previously proposed solutions require partial decompression
Compressed-domain solutions are also very restrictive, e.g., resizing by powers of 2 (and still
compute-intensive)

I Adaptation must be machine-e�cient
Adaptation must be performed extremely fast to accommodate a large number of
messages/pages.
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Adaptation Examples
Problem De�nition

Proposed Solution(s)

In previous work, we have proposed to guide explicit optimization of
MMS messages [4] using predictors [1�3]

The rationale being that low cost predictors avoid performing
actual transcodings until the best (probable) solution is found by
optimization.

In this paper, we propose a new predictor based on clustering to
guide the e�cient adaptation of JPEG images.
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Transcoding Operations

A transcoding operation is de�ned as the output quality factor,
QFout and scaling 0<z61, to apply to an image with original
resolution w × h and quality factor QFin.

The transcoding operation (QFout , z) applied to an image I yields

I a quality q(I ,QFout , z), measured using SSIM

I and a �le size f (I ,QFout , z).

...which we want to predict without actually performing the
transcoding.
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JQSP1
JPEG Quality and Size Predictor

Predicts the �le size and quality resulting from a transcoding
operation (new scaling, z , and quality factor QFout), given the
input image �le size and original quality factor QFin [1,2].

The parameters where quantized for prediction: we have z̃ , Q̃F in,
Q̃F out , indexing an array which contained the predictions for the
resulting �le size and for the resulting quality.

The prediction for quality (or relative �le size) is the expectation of
quality (or relative �le size) over all transcodings with the same
parameters, estimated over a (large) corpus of images.
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JQSP1

I The quality factors Q̃F ∈ {10, 20, . . . , 100}

I The scalings z̃ ∈ {0.1, 0.2, . . . , 1.0}.

I ∼ 73 000 original images

I For each image, 100 di�erent transcodings: all (Q̃F , z̃)

I ∼ 6 570 000 training exemplars (leaving out ∼ 730000 test
exemplars in a 90%/10% scheme).

I This corpus was used to populate a 10×10×10 (we also have

Q̃F in) array for predictions f̂ (I , Q̃F out , z̃) and q̂(I , Q̃F out , z̃)
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JQSP2

Predictor JQSP2 [3] does the converse of JQSP1 in that it predicts
the transcoding parameters that maximize perceived quality given a
�le size constraint.
(rather than directly predicting the resulting �le size and quality)

As JQSP1, JQSP2 uses the expectation to formulate its
predictions, but does not use quantization directly: it will use all
training exemplars that minimize the error to the desired �le size
while maximizing the quality.
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Proposed Solution

In this work, we propose a new solution, EJQSP, based on
clustering.

The general idea is to represent transcoding operations on images
as points in a (moderately-)high dimensional space and to partition
this space in order to make the predictions.
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The Clustering Problem

Given X = {x1, x2, . . . , xn}, n exemplars in Rd ,

We de�ne a partition C = {C1,C2, . . . ,Cm} such that
⋃m

i=1 Ci = X

and Ci ∩ Cj = ∅ for 1 6 i 6= j 6 m, and that for each Ci , we have
a centroid given by

x̄i =
1

|Ci |
∑

xj∈Ci
xj

The error associated to the partition C is therefore:

E (C ) =
∑m

i=1

∑
xj∈Ci

‖xj − x̄i‖2

for an appropriately de�ned metric ‖ · ‖
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The Clustering Problem

The goal is to �nd the optimal partition C ∗, such that

C ∗ = argmin
C

E (C ) (1)

But this is NP-hard, except for trivial cases!

We will use K-Means to solve eq. (1)
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Proposed Solution
Exemplars

For our problem, we will de�ne each of the exemplars as a
9-dimensional vector given by:

xj = (QFj ,wj , hj , bj ,QFout , z ,QFout − QFj , f , q) (2)

where

I QFj is the original quality
I wj and hj are the normalized width

and height,
I bj is the bits per pixel of the image,
I QFout , the desired output quality,

I z, the scaling,

I QFout − QFin a �feature�,

I f and q are the resulting �le size
and quality, by abuse of notation.
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Proposed Solution
Prediction

For a new image Ij , to transcode using transcoding parameters
QFout and z , we form a vector such as given by eq. (2), and we �nd
the closest centroid's index given by:

i = argmin
i
‖xj − x̄i‖2

where the f and q components are left out of the metric�as they
are the quantities we want to predict!

The predictions are thus: f̂ = f̄i , the f -component of x̄i , and
q̂ = q̄i , the q-component of x̄i .
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Results
Relative File Size Prediction Error

0 5000 10000 15000 20000

Number of Prototypes

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

A
v
e
ra

g
e
 A

b
so

lu
te

 E
rr

o
r Predictors

JQSP1
JQSP2
EJQSP

Relative Size Prediction Error

Steven Pigeon Stéphane Coulombe E�cient Clustering-Based Algorithm for Predicting File Size and StructuralSimilarity of Transcoded JPEG Images



Introduction
Previous Work

Proposed Solution
Results

Discussion
Conclusion

Results
Quality Prediction Error
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Results
Relative File Size Prediction Error Distribution
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Results
Quality Prediction Error Prediction
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Results
summary

EJQSP bests previously proposed method signi�cantly:

I EJQSP File size prediction error:

I ≈ 40% smaller than JQSP1

I ≈ 27% smaller than JQSP2

I EJQSP Quality Prediction error:

I ≈ 20% smaller than JQSP1

I ≈ 12% smaller than JQSP2
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Training
Prediction

Training

All (initial) training is done o�-line on the exemplar from the image
corpus.

I For JQSP1, training (once the exemplars are obtained), is
essentially O(n)

I For JQSP2, training is O(n |Q̃F out | |z̃ | |f̃ |)

I For EJQSP, training is O(d m n log n), for m prototypes from
n exemplars in Rd
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Training
Prediction

Prediction

For prediction, we have that:

I JQSP1 predicts in O(1),

I JQSP2 predicts in O(1),

I ...but EJQSP predicts in O(m d), because nearest neighbor in
Rd is hard

Steven Pigeon Stéphane Coulombe E�cient Clustering-Based Algorithm for Predicting File Size and StructuralSimilarity of Transcoded JPEG Images



Introduction
Previous Work

Proposed Solution
Results

Discussion
Conclusion

Conclusion

In summary:

I EJQSP predicts much better �le size and quality than our
previous work

I EJQSP prediction has higher algorithmic complexity, but still
reasonable

I EJQSP can be used in optimization systems such as presented
in [2,3]
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